a member of
다K and
FREUDENBERG

M7N

Mechanical seals | Mechanical seals for pumps | Pusher seals

Features

- For plain shafts
- Single seal
- Unbalanced
- Super-Sinus-spring
- Independent of direction of rotation

Advantages

- Universal application opportunities
- Efficient stock keeping due to easily interchangeable faces
- Extended selection of materials
- Insensitive to low solids contents
- Flexibility in torque transmissions
- Self cleaning effect
- Short installation length possible(G16)
- Pumping screw for media with higher viscosity (M7..F)

Operating range

Shaft diameter:
d1 = 14 ... $100 \mathrm{~mm}\left(0.55^{\prime \prime}\right.$... $\left.3.944^{\prime \prime}\right)$
Pressure:
p1 = 25 bar (363 PSI)
Temperature:
$t=-50^{\circ} \mathrm{C} \ldots+220^{\circ} \mathrm{C}$
($-58{ }^{\circ} \mathrm{F} \ldots+428^{\circ} \mathrm{F}$)
Sliding velocity:
$\mathrm{vg}=20 \mathrm{~m} / \mathrm{s}(66 \mathrm{ft} / \mathrm{s})$
Axial movement:
d1 = up to $25 \mathrm{~mm}: \pm 1.0 \mathrm{~mm}$
d1 $=28$ up to $63 \mathrm{~mm}: \pm 1.5 \mathrm{~mm}$
$\mathrm{d} 1=$ from $65 \mathrm{~mm}: \pm 2.0 \mathrm{~mm}$

Materials

Seal face: Silicon carbide (01)
Seat G9: Carbon graphite antimony impregnated (A), Carbon graphite resin impregnated (B), Silicon carbide (O1) Seat G4, G6 (O1), Seat G13 (A, B)

Secondary seals: EPDM (E), FKM (V), FFKM (K)
Springs: CrNiMo steel(G)
Metal parts: CrNiMo steel(G), Duplex (G1)

Standards and approvals

- EN 12756

Recommended applications

- Process industry
- Chemical industry
- Pulp and paper industry
- Water and waste water technology
- Shipbuilding
- Lube oils
- Low solids content media
- Water / sewage water pumps
- Chemical standard pumps
- Vertical screw pumps
- Gear wheel feed pumps
- Multistage pumps (drive side)
- Circulation of printing colors with viscosity $500 \ldots 15,000 \mathrm{~mm}^{2} / \mathrm{s}$.

EagleBurgmann

a member of
든K ${ }_{\text {and }}$
FREUDENBERG

| Item Part no. to | Description |
| :--- | :--- | :--- |
| DIN 24250 | |

1.1	472	Seal face
1.2	485	Drive collar
1.3	474	Thrust ring
1.4	412.1	O-Ring
1.5	477	Spring
1.6	904	Set screw
2	475	Seat (G9)
3	412.2	O-Ring
1) d1> $100 \mathrm{~mm}: 30^{\circ}$		
2) $\mathrm{d} 1>100 \mathrm{~mm}:+0.1$		
3) $\mathrm{d} 1>100 \mathrm{~mm}: ~ H 7$		

EagleBurgmann

a member of EKK and . FREUDENBERG

Seat alternatives

G9(EN 12756)

G6(EN 12756)

G4

EagleBurgmann

a member of EKK and . FREUDENBERG

G16
(EN 12756, but $I_{1 k}$ is shorter than specified)

EagleBurgmann.

a member of
다KK and
FREUDENBERG

Torque transmissions

d1 > 100 mm (3.94")
Torque transmission by 4 set screws with cone points. Offset: 90°

Drive key
(M7S2 / M74S2)

a member of
다KK and
FREUDENBERG

Product variants

M74

Dimensions, items and descriptions as for M7N, but with multiple springs (Item no. 1.5).
Preferably for d1>100 mm (3.94").

M7F

Shaft diameter $\mathrm{d} 1=\max .100 \mathrm{~mm}$ (3.94")
Dimensions, items and descriptions as for type
M7N, but with pumping screw, dependent on
direction of rotation.
(Viscosity \leq ISO VG10).

M7S2

Shaft diameter: d1 = max. 100 mm (3.94").
Dimensions, items and descriptions as for type M7N, but with drive key.
(without item no. 1.6)
a member of 드K $_{\text {and }}$ FREUDENBERG

RELY ON EXCELLENCE

M74F

Shaft diameter:
d1 = 14 ... 200 mm (0.55" ... 7.87")
Dimensions, items and descriptions as for type M7N, but with multiple springs and pumping screw, dependent on direction of rotation.
(Viscosity \leq ISO VG10).

M74S2
Shaft diameter:
d1 = 28 ... 200 mm (1.10" ... 7,87")
Dimensions, items and descriptions as for type M7N, but with multiple springs and drive key.
(without item no. 1.6)

M78N

Shaft diameter:
d1 = 18 ... 100 mm (0.71" ... 3.94")
Temperature: $\mathrm{t}=\max .180^{\circ} \mathrm{C}\left(356^{\circ} \mathrm{F}\right)$

Dimensions, items and description as for M7N. Design of the seal face especially for secondary sealing element made of PTFE (T). Seal face: Carbon graphite antimony impregnated (A), Carbon graphite resin impregnated (B), Silicon carbide (01)* Seat G9: Special cast CrMo steel(S)*, Silicon carbide (O1)

* Cannot be combined with seal face made of silicon carbide (01)
a memberof E EKK and , FREUDENBERG

Dimensions

d_{1}	d_{3}	d_{6}	d_{7}		d_{11}	d_{12}	d_{24}	$\mathrm{d}_{\text {s }}$	$\mathrm{I}_{1 \mathrm{k}}$	13	15	I_{6}	l_{7}	18	19	${ }_{10}$	${ }_{11}$	12	$1{ }_{13}$	$1 / 4$	l_{15}	I_{16}	${ }_{28}$	b	f	mx	$u_{\text {max }}$	t	R
14*	25	21.	25.0	3	20.	24.6	16	34	35.0	25.0	1.5	4	8.5	17.5	10.0	7.5	10.0	6.5	7.6	5.6	1.2	3.8	6.6	4	6	M5	10	1.5	1.2
16*	27	23.0	27.0	3	22.0	28.0	18	36	35.0	25.0	1.5	4	8.5	17.5	10.0	7.5	11.5	8.5	9.0	7.5	1.2	3.8	6.6	4	6	M5	10	1.5	1.5
18*	33	27.0	33.0	3	24.0	30.0	20	38	37.5	26.0	2.0	5	9.0	9.5	11.5	8.5	12.5	9.0	10.0	8.0	1.5	5.0	7.5	5	7	M5	12	1.1	1.5
20*	35	29.0	35.0	3	29.5	35.0	22	40	37.5	26.0	2.0	5	9.0	19.5	11.5	8.5	2.5	8.5	9.5	7.5	1.5	5.0	7.5	5	7	M5	12	1.1	1.5
22^{*}	37	31.0	37.0	3	29.5	35.0	24	42	37.5	26.0	2.0	5	9.0	19.5	11.5	8.5	12.5	8.5	9.5	7.5	1.5	5.0	7.5	6	7	M5	12	1.5	1.5
24^{*}	39	33.0	39.0	3	32.0	38.0	26	44	40.0	28.5	2.0	5	9.0	19.5	11.5	8.5	2.5	8.5	9.5	7.5	1.5	5.0	7.5	6	8	M5	12	1.5	1.5
25^{*}	40	34.0	40.0	3	2.0	8.0	27	45	40.0	28.5	2.0	5	9.0	9.5	11.5	8.5	12.5	8.5	9.5	7.5	1.5	5.0	7.5	6	8	M5	12	1.5	1.5
$28 *$	43	37.0	43.0	3	36.0	42.0	30	47	42.5	31.0	2.0	5	9.0	19.5	11.5	8.5	4.0	D. 0	11.0	9.0	1.5	5.0	7.5	6	8	M6	13	1.5	1.5
$30 *$	45	39.0	45.0	3	39.2	45.0	32	49	2.5	31.0	2.0	5	9.0	19.5	11.5	8.5	14.0	11.5	11.0	10.5	1.5	5.0	7.5	6	8	M6	13	1.5	1.5
32*	47	42.0	48.0	3	42.2	48.0	34	51	42.5	31.0	2.0	5	9.0	19.5	11.5	8.5	4.0	11.5	11.0	10.5	1.5	5.0	7.5	6	8	M6	13	1.5	1.5
33^{*}	48	42.0	48.0	3	44.2	50.0	35	51	42.5	31.0	2.0	5	9.0	9.5	11.5	8.5	14.5	12.0	11.5	10.5	1.5	5.0	7.5	6	8	M6	13	1.5	1.5
35*	50	44.0	50.0	3	46.2	52.0	37	54	2.5	31.0	2.0	5	9.0	9. 5	11.5	8.5	4.5	12.0	11.5	11.0	1.5	5.0	7.5	6	8	M6	13	1.5	1.5
38*	55	49.0	56.0	4	49.2	55.0	40	59	45.0	31.0	2.0	6	9.0	22.0	14.0	10.0	14.5	11.3	11.5	10.3	1.5	5.0	9.0	6	8	M6	13	1.5	1.5
40^{*}	57	51.0	58.0	4	52.2	58.0	42	61	45.0	31.0	2.0	6	9.0	22.0	14.0	10.0	14.5	11.8	11.5	10.8	1.5	5.0	9.0	6	8	M6	13	1.5	1.5
$43 *$	60	54.0	61.0	4	53.3	62.0	45	65	45.0	31.0	2.0	6	9.0	22.0	14.0	10.0	17.0	13.2	14.3	12.0	2.0	6.0	9.0	6	8	M6	13	1.5	2.5
45^{*}	62	56.0	63.0	4	55.3	64.0	47	66	45.0	31.0	2.0	6	9.0	22.0	14.0	10.0	17.0	12.8	14.3	11.6	2.0	6.0	9.0	6	8	M6	13	1.5	2.5
48^{*}	65	59.0	66.0	4	59.7	68.4	50	69	45.0	31.0	2.0	6	9.0	22.0	14.0	10.0	17.0	12.8	14.3	11.6	2.0	6.0	9.0	6	8	M6	13	1.5	2.5
50*	67	62.0	70.0	4	60.8	69.3	52	71	47.5	32.5	2.5	6	9.0	23.0	15.0	0.5	17.0	12.8	14.3	11.6	2.0	6.0	9.5	6	8	M6	13	1.5	2.5
53*	70	65.0	73.0	4	63.8	72.3	55	75	47.5	32.5	2.5	6	9.0	23.0	15.0	12.0	17.0	13.5	14.3	12.3	2.0	6.0	1. 0	6	8	M6	13	1.5	2.5
55^{*}	72	67.0	75.0	4	66.5	75.4	57	76	47.5	32.5	2.5	6	9.0	23.0	15.0	12.0	18.0	14.5	15.3	13.3	2.0	6.0	11.0	6	8	M6	13	1.5	2.5
$58 *$	79	70.0	78.0	4	69.5	78.4	60	83	52.5	37.5	2.5	6	9.0	23.0	15.0	12.0	18.0	14.5	15.3	13.3	2.0	6.0	11.0	8	9	M8	13	1.9	2.5
60*	81	72.0	80.0	4	71.5	80.4	62	85	52.5	37.5	2.5	6	9.0	23.0	15.0	12.0	18.0	14.5	15.3	13.3	2.0	6.0	11.0	8	9	M8	13	1.9	2.5
63^{*}	84	75.	83.0	4	74.5	83.4	65	88	52.5	37.5	2.5	6	9.0	23.0	15.0	12.0	18.0	14.2	15	13.3	2.0	6.0	11.0	8	9	M8	13	1.9	2.5
65^{*}	86	77.0	85.0	4	76.5	85.4	67	95	52.5	37.5	2.5	6	9.0	23.	15.0	12.0	18.0	14.2	15.3	13.0	2.0	6.0	11.0	8	9	M8	13	1.9	2.5
$68 *$	89	81.0	90.0	4	82.	91.5	70	93	52.5	34.5	2.5	7	9.0	26.0	18.0	12.5	19.0	14.9	16.	13.7	2.0	6.0	11.3	8	9	M8	13	1.9	2.5
70*	91	83.0	92.0	4	83.0	92.0	72	95	60.0	42.0	2.5	7	9.0	26.0	18.0	12.5	18.0	14.2	15.3	13.0	2.0	6.0	11.3	8	9	M8	16	1.9	2.5
75*	99	88.0	97.0	4	90.2	99.0	77	105	60.0	42.0	2.5	7	9.0	26.0	18.0	12.5	18.0	15.2	15.3	14.0	2.0	6.0	11.3	8	10	M8	16	1.9	2.5
80^{*}	104	95.0	105.0	4	95.2	104.0	82	109	60.0	41.8	3.0	7	9.0	26.2	18.2	13.0	19.0	16.2	16.3	15.0	2.0	6.0	12.0	8	10	M8	16	1.9	2.5
85*	109	100.0	110.0	4	100	109.0	87	114	60.0	41.8	3.0	7	9.0	26.2	18.2	15.0	19.0	16.0	16.3	14.	2.0	6.0	14.0	8	10	M8	16	1.9	2.5
90^{*}	114	105.0	115.0	4	105.2	114.0	92	119	65.0	46	3.0	7	9.0	26.2	18.2	15.0	19.0	16.	16.3	14.	2.0	6.0	14.0	10	10	M8	20	2.3	2.5
95*	119	110.0	120.0	4	111.6	120.3	97	124	65.0	47.8	3.0	7	9.0	25.2	17.2	15.0	20.0	17.0	17.3	15.8	2.0	6.0	14.0	10	10	M8	20	2.3	2.5
100*	124	115	125.0	4	114.5	123.	102	129	65.0	47.8	3.0	7	9.0	25.2	17.2	15.	20.0	17.	17.3	15	2.0	6.0	14.0	10	10	M8	20	2.3	2.5
105	138	122.	134.3	5	-	-	108	143	67.0	47.0	2.0	10	12.0	30	20.	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
110	143	128.2	0.3	5	-	-	113	148	67.0	47.0	2.0	10	12.0	30.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
115	148	136.2	148.3	5	-	-	118	153	67.0	47.0	2.0	10	12.0	30.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
120	153	138.2	150.3	5	-	-	123	158	67.0	47.0	2.0	10	12.0	30.	20.		-	-	-	-	-			10	10	M8	20	2.3	
125	158	142.2	154.3	5	-	-	128	163	67.0	47.0	2.0	10	12.0	30.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
130	163	146.2	158.3	5	-	-	133	168	67.0	47.0	2.0	10	12.0	30.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
135	168	152.2	164.3	5	-	-	138	173	67.0	47.0	2.0	10	12.0	0.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
140	173	156	168.3	5	-	-	143	178	67.0	47.0	2.0	10	12.0	30.0	20.	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
145	178	161.2	173.3	5	-	-	148	183	67.0	47.0	2.0	10	12.0	30.0	20.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
150	183	168.2	180.3	5	-	-	153	18	69.0	47.0	2.0	10	12.0	32.0	22.0	-	-	-	-	-	-	-	-	10	10	M8	20	2.3	
155	191	173.2	185.3	5	-	-	158	196	80.0	56.0	2.0	12	12.0	34.0	24.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	
160	196	178.2	190.3	5	-	-	163	201	80.	56.0	2.0	12	12.0	34.	24.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	
165	201	183.2	195.3	5	-	-	168	206	80.0	56.0	2.0	12	12.0	34.0	24.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	
170	206	188.2	200.3	5	-	-	173	211	80.0	56.0	2.0	12	12.0	34.0	24.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	
175	211	193.2	205.3	5	-	-	178	216	80.0	56.0	2.0	12	12.0	34.0	24.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	-
180	216	207.5	219.3	5	-	-	183	221	84.0	56.0	2.0	12	12.0	38.0	28.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	

EagleBurgmann.

a member of EKK and . FREUDENBERG

RELY ON EXCELLENCE

d_{1}	d_{3}	d_{6}	d_{7}			d_{12}	d_{24}	$\mathrm{d}_{\text {s }}$	l_{lk}	I_{3}	I_{5}	I_{6}	17	I_{8}	19	I_{10}	I_{11}	l_{12}	l_{13}	I_{14}	I_{15}	I_{16}	l_{28}	b	f	m_{x}	$u_{\text {max }}$	t	R
185	221	212.5	224.3	5	-	-	188	226	84.0	56.0	2.0	12	12.0	38.0	28.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	-
190	226	217.5	229.3	5	-	-	193	231	84.0	56.0	2.0	12	12.0	38.0	28.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	-
195	231	222.5	234.3	5	-	-	198	236	84.0	56.0	2.0	12	12.0	38.0	28.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	-
200	236	227.5	239.3	5	-	-	203	241	84.0	56.0	2.0	12	12.0	38.0	28.0	-	-	-	-	-	-	-	-	12	12	M8	24	2.1	-

Dimensions in millimeter
$d_{1}>200$ on request

* EN 12756

